

MODULES and FEATURES OF KIO (Klemsan Internet Objects)

www.kioplatform.com

LIST OF KIO MODULES

Basic Module

Advanced Monitoring Module

Advanced Reporting Module

Sensor and I/O Module



Advanced Reporting Module

You can set up scheduled reports, make budgets and regression analysis, and get weather information with the advanced reporting module.

Advanced Monitoring Module

You can monitor energy efficiency, make unit cost calculation, pin devices from different locations on the map and make comparisons on organizational, device or device group basis.

Consumption Comparison Report			Term Based Consumption Comparison Device Based Con	nsumption Compar
omparison Period*	Select A Month*			
ally Consumption +	2019/06/01			
mparison Filter*	Select Device Categories*			
ised on Device Category	iii Lighting iii Machine iii Assembly iii Compressor			
Report T	Device Based	Consumption Comparison Graph		
				-
00 0 2. May 4. May 6. May		Hary 18. May 18. May 20. May 22. Ma	y 24. May 26. May 28. May	30. Way
DTAL CONSUMPTION				
	MACHINE	ASSEMBLY	COMPRESSOR	

Invoice Management Module

You can create invoices according to the invoice tariffs formed in the parametric structure, see the invoice amounts of the devices for different periods, and track charging of issued invoices. You can use this module in order to cut energy of the devices in case of unpaid bills.

	Power Factor Controller MF
Description:	Power Factor Controller MF
Facility - Device	34534534 - 34523434
Invoice Tartif:	Elec. Single Time Term
Invoice Term:	Test
First Index Date:	2/28/18 11:45 PM
Last Index Date:	6/30/18 11:45 PM
Internal Index Multiplier:	320
Established / Contract	100 kVA / 100 kW

Klemsan[®]

ELECTRICITY BILL REPORT

Total Cost: 303.548,88 TL

	First Index	Last Index	Multiplier	Consumption	Unit Price	Amount	
Active (kWh)	4.304.727,000	5.293.841,000	. t	969.114,000	0,201100	198.910,82	T
T1 (kWh)	0.000	0,000	1	0,000	0,000000	0,00	TI
T2 (kWh)	0.000	0,000	1	0,000	0,000000	0,00	Т
T3 (kWh)	0,000	0,000	1	0,000	0,000000	0.00	Τι
Inductive (kVArh)	179.437,312	221.889,453	1	42,452,141	0,000000	0.00	П
Capacitive (kVArh)	75.989,461	93.693,891	1	17,704,430	0,000000	0.00	TL
Active 2 (kWh)	0,000	0,000	1	0,000	0,000000	0,00	π
Compensation Ratio:			Distribution	989.114,000	0,054954	54.355,77	π
inductive Ratio (%):	4,29% (Limit: 20%)		Retail	989.114,000	0,000000	0.00	TL
Capacitive Ratio (%):	1,79% (Limit: 15%)	Т	Transmission Line 989.114		0,000000	0,00	η
Average Consumption	later.			Energy Fund(%)	1.0%	1 989 11	T

verage Consumption I	niloc	Energy Fund(%)	1,0%	1.985
onsumption Amount:	8.107,492 kWh/Day	TRT Share(%)	0,0%	0
onsumption Cost:	2.488,11 TL/Day	Consumption Tax(%)	1,0%	1.986
	CONTRACTOR AND A CONTRACTOR			

Informatio

Device Communication	0,00 1
Fixed Cost	0,00 1

0.00 TI

Total Cost	303.548,88 TL
Tax Cost 18,0%	46.304,07 TL
Total Basis Cost	257.244,81 TL

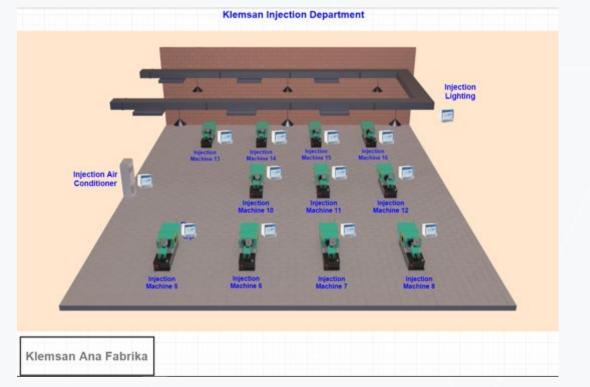
Sensor and I/O Module

You can manage the sensor and remote manageable input / output units with this module and set an alarm for them. You can create values by applying four mathematical operations on the sensor data. You can also set alarms using these customized values.

EACION 12 Input 12 Output (224EC

Sensor Monitoring

Control of Input/Output Units


ANNARA OFFICE

Instant Values	154
Sensor Value Type	Sensor Value
Digital input 1	69
Digital input 2	ON .
C tright	ON .
Digital input 4	00
Digital Input 5	ON
Sigtal input 6	01
Sigital Input 7	01
Digital Input 8	01
Sigital Input 9	0
bigital input 10	

WEB SCADA Module (1)

SCADA system can be moved to the web environment, you can easily manage your devices over the web with SCADA logic. You can set an alarm for your devices and enrich your SCADA environment with various graphics. You can monitor the change in data instantaneously similar to SCADA system.

WEB SCADA Module (2)

When we apply OPC UA*, we have two benefits in factory automation side.
If factory does not have SCADA system, but has other protocols (IEC-104, 101), we have to setup KepWare EX (protocol converter software for OPC UA)

and then we start to obtain data from different protocols.
 If the factory has a SCADA system with OPC UA support, we get the data

from SCADA system with OPC standard easily. It is important that SCADA system should support OPC UA.

(*) - OPC Unified Architecture (OPC UA) is a machine to machine communication protocol for industrial automation developed by the OPC Foundation. Distinguishing characteristics are:

- Focus on communicating with industrial equipment and systems for data collection and control
- Open freely available
- Cross-platform not tied to one operating system or programming language
- Service-oriented architecture (SOA)
- Inherent complexity the specification consists of 1250 pages in 14 documents
- Robust security

Mobile Application

Energy Efficiency (ISO 50001) Module

You can control all points with the energy measurement plan and help the environmental management system with the carbon emission and TEP calculation. You can also view the status of energy consumption with the energy performance indicators.

Calculation Term	February 28 Days					Delete Term	
Description	February 28 Days						
Start Date	01 • February	• 2019	•	End Date 01	 March 	* 2019 *	
Device Calculation	ons						
Unmeasurable S	Source Calculations						
Total CO2 Release		39.903 Ton/CO2	Total Tree Count		107 Piece	Total TEP	7.5730 T
		Calculate +					

Multi-Conditional Status Module

It is known as advanced alarm management system. Various logical operators are applied to analog, digital and derived values to take actions such as cutting-off energy, opening relay or closing the valve. If alarms occur, users are notified.

General Info	0									
	😨 Is Active ?									
Description*	Compressor Nearing Stop / C	Compressor Stopped			Threshold To	ne -	1	Minute(s)		
Conditional ID	a		▼ AdS+		Conditional Opera	tor (•	as +
ti Conditional Status Formula*	(R)									
	Aarm creation status				Alarm Lev	e* Oritic	i			
© Analog Co										
© Analog Co Conditional I	nditions	Device		Label	Control Area		Minimum	Maxim	num.	
Conditional I	nditions	Device		Label	Control Area Out of Range	•	Minimum 0.0000		num 0.0000	
Conditional I	nditions D	_		_		•				
Conditional I	nditions	_		_		*	0.0000		0.0000	
Conditional II a O Digital Con Conditional II	nditions	Device	Compressor Warning	Label			0.0000 Number		0.0000	
Conditional II a O Digital Cor Conditional II j	nditions • nditions •	Device Panel	Compressor Warning	Label	Out of Range		0.0000 Number	Normal	0.0000 Value	

Data Transfer Module

With Data Transfer Module, measured values and parameters in Excel or similar formata are transferred to the system and monitored. The data in Excel can be either hourly values, index values or device parameters.

« ((Gölchen AKYOL 🐱
	Data Import / Export Module			
•	Main Page > Definition > Data import/Export			
	■ Data Import/Export	Hourly Data Import	Index Data Import	Denice Data Impact
	Click to Download Hourly Device Excel Data Pattern	Houry beta import	THEY CARE INCOME	Cence Cata amport
	Device Tree* Click to select Qverride value Qverride value	es		
	Save 🛩			

All features are included in Basic Module unless any specific module is explicitly mentioned

Real-Time Monitoring: Device parameters can be monitored on organizational or graphical basis. Reactive energy monitoring can be done.

Alarm Management: You can see alarm status, filter alarms and even check alarms occurred in the past. Logs of both system and device alarms are kept. You can also classify alarm levels as warning, critical or dangerous.

Easy-to-use Dashboards: You can customize dashboard screens according to your needs, so you can directly access the most critical data when you log in to the system.

Standard Reports : You can create customized report formats or use predefined automatic reports. (Instant Data, Index and Energy Data, Periodic Energy Consumption, Demand Data, Invoice)

Web Based System: Users can gain access the system regardless of the platform, simply through a standard web browser.

•••	2000
•••	XXX
•••	2000

Advanced Database: Advanced database features enable detailed device monitoring, parameter logging, analyzing and reporting.

Time Zone Support: Different time zones can be defined for the devices located at different regions.

Brand Independent Integration:

Klemsan or other branded products can be added to the system and energy consumption of all products in the system can be monitored.

Security: HTTPS support, user passwords, functions and profile based user authorization ensure a high level of system safety.

Load Share: Number of devices that communicate is infinite with load share a single server supports more than 2000 devices.

Single Line Scheme (Mimic Diagram): Single line scheme can be designed through webbased system. Features similar to SCADA system can be defined (available only with WEB SCADA Module)

Cost Analysis: Budget calculation according to various energy sources can be done in order to supply supportive data for financial department. Target and actual costs can be compared. (avaible only with Advanced Reporting Module)

Multi-conditional Status: Logical operations on analog, digital and derived values in the system are performed and various controls are provided. (available only with Multi-conditional Status Module)

Map Screen: Enables over-themap monitoring of devices located at different facilities or regions by simply pinning devices on the map. <u>(available</u> only with <u>Advanced</u> <u>Monitoring Module)</u>

SaaS or On-Premises Solution:

SaaS (Sofware as a Service) is optionally provided for anyone who does not want to invest in server or infrastucture.

Real-Time Monitoring:

Organizational Monitoring: You can perform energy analysis in organizational level, generate charts and graphs, zoom in devices for more detailed data analysis.

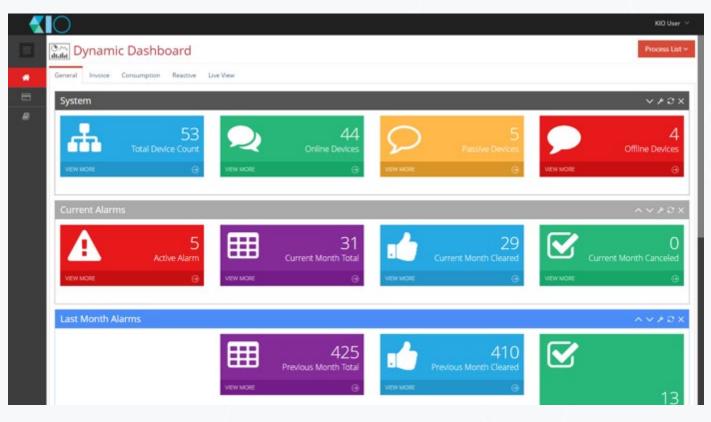
rganization	KLEMSAN								Crganization	KLEMSAN			
inactive No Communication	Nam Communication	Info Categorical C	onsympton						Alive Inactive No Communication	Name Communication Info Categorical Consumption			
Collapse All	Active Alarm L	ist						Auss Refresh 🛃	Seath Colupte Al	Dev	ce Communication Status		
ISAN	Organization	Device	Device Model	Alarm Description	Alarm Time	Alarm Value	Alarm Approval			em, device, model, typ	2017-06-20 16 54 02		
KAL ANATOLIAN REGION are Total Consumption					Street 1	0.6874	Approve	Canad	CENTRAL ANATOLIAN REGION	em_device_model_syst_51: 7.55%			
NL) MAR REGION OFFICE		Devic	e tre	ee	516-00143	220.3808	Арргоня	Cancal	E C MARMARA REGION	Energy Analyzer: 2.53%	Canal Constant		
Thermocropie erature Hamidity-Light	wants puct	Main Femder WD	Kina Terap	Ara Gro III Voluge	7 Houseful 13	226.8250	Approve	Cancel		Without Electricity Device: 3.64%	(mar		
ore manufactory cights	Manual actions of	Decrosse	Kerv145	Elektronik Alt Kat Kles	4 Day 23	220.2560	Approve	Canot		Decision Hadameter: 1.89%			
	MANUFACTURING/	Injection Line	Resv1.45	Erpeluiyon Matore Klea	8 Day 2	221.0377	Approve	Cancal		Boartive Power Control Brian 5 60%			
Tatal cost.	MANAGE RELIGION	Avenue Differe	the state	Annual Dis Apla	Al Day 29	36.5218	Chun Vykseld	Cancel					
Duck Factory Total Cons.	ANNAL REGION	Andread Collins	the shaft	Classifi Con Alarter		210-2726	Approve	Cancel			(2220		
AIN FACTORY fain Feeder MF												Energy Analyzer: 69 815	50 - E
inver Factor Controller MF IKA													
Feka MANUFACTURING	Passive Alarm	List						Auto Refresh					
ir Compressor 908W ir Flow Meter OM905	Organization	Device	Device Model	Alarm Description	Alarm Time	Alarm Value	Alarm Approval	Updated by		Communication Status			Auto Refresh
Automated Tapping Line Automatic Assembly	MANUFACTURING/	Assess	0mv1.53	Air Plan Assembly	1 Minute(c)	2.0000	Approve	System 14:10:44		Device Model Name	Online	offline	Passive
artic Assembly 085										Arduino Temperature Humidity Kit			

Real-Time Monitoring:

Graphical Monitoring:

Statements of the local division of the loca	pritoring								
ter Fulle									
ne .	Dely			23					
r bea	3 * 50	• 200	1.1	•	bebes	1. 1.	1.4 200	* = * =	
Measureme	ectinfo								
Consumption	n Counter Info								
Dwite Ach	ve inte								
Weather Inf	b								
legert W									
							2.11		
-									
								<i>,</i>	
• • • • •									
-		_							

Reactive Energy Monitoring:



Alarm Management: You can see alarm status, filter alarms and even check alarms occurred in the past. Logs of both system and device alarms are kept. You can also classify alarm levels as warning, critical or dangerous.

0						KIO U					
≡ Alarms				Active Alarms	Approved Alarms	Passive Alar					
Device *	Selected Devices										
Alarm Level* All Titter T											
Alarm Type Distribution (9i)		71.4% Warning		_	28.6% Critica	d.					
Device	Organization	Alarm Description	Alarm Value	Create Date	Alarm Time						
Power Factor Controller MF	MAIN FACTORY / İZMİR / EGE REGION	🕥 deneme	229.5598	2017-05-30 15:10:12	18 Hour(s) 26 Minute(s)	d Approv					
Main Feeder WD	WIRING DUCT FACTORY / İZMİR / EGE REGION	() Ana Giris KF Voltage AVG. Out Of Limits(220- 225)	231.8905	2017-05-29 16:30:52	1 Day 17 Hour(s) 6 Minute(s)	de Approv					
Manual Assembly Department (2nd Seg.)	MANUFACTURING / MAIN FACTORY / İZMİR / EGE REGION	Manuel Montaj-2 Klea v1.45 INS VOLTAGE Out of Range 210-225V	225.3524	2017-05-29 16:30:36	1 Day 17 Hour(s) 6 Minute(s)	🔹 Аррени					
Injection Line	MANUFACTURING / MAIN FACTORY / İZMİR / EGE REGION	Enjeksiyon Makine Klea v1.45 INS VOLTAGE Out of Range 210-225V	225.4982	2017-05-29 16:30:34	1 Day 17 Hour(s) 6 Minute(s)	di Approv					
Electronic Ground Floor	MANUFACTURING / MAIN FACTORY / İZMİR / EGE REGION	Elektronik Alt Kat Klea v1.45 INS VOLTAGE Out of Range 210-225V	225.1089	2017-05-29 16:30:32	1 Day 17 Hour(s) 6 Minute(s)	d Approv					
	ANKARA REGION OFFICE / CENTRAL	Ankara Ofis Aylık Reaktif Kapasitif	56.5258	2017-05-29	1 Day 17 Hour(s) 6	Augerore					

Easy-to-use Dashboards: You can customize dashboard screens according to your needs, so you can directly access the most critical data when you log in to the system.

Standard Reports: You can create customized report formats or use predefined automatic reports. (Instant Data, Index and Energy Data, Periodic Energy Consumption, Demand Data, Invoice)

Description 0	Organization	Device Model	Date Time	Act.En.T1Imp.(kWh)
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-01	844.6280
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-02	771.0738
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-03	759.9084
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-04	757.8997
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-05	752.4323
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-06	749.0762
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-07	763.2966
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-08	728.6181
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-09	1,346.2490
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-10	10,249.5488
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-11	10,706.9814
Main Feeder MF	MAIN FACTORY	Klea v1.53	2019-06-12	9,971.5945

Cost Analysis: Budget calculation according to various energy sources can be done in order to supply supportive data for financial department. Target and actual costs can be compared. (available only with Advanced Reporting Module)

Budget Mi	anagement									Device		1.2.4.2			SerialNumber:	3080217
Organization	Main Feeder MF									Main Feeder M	- I	ELECTRIC CON	SUMPTION T	ABLE		
Consumption	Nisari Tüketim Hedefi									Main Peeder M	r				Facility Nr:	544145544
Target	Negati Foldesti Presieri									Monthly Consumption Ta	12	5.000,00 kWh			Private Supple	Türkiye(Tedas)
Report T	Print List CP Print All Records	æ.								Daily Consumption Ta	-	166.67 kWh		Active Energy:	0.000000	0.000000
20	· records per page									Monthly Consumption Ta		0.432.00 TL		Distribution:	0.083456	0.083456
							Month End	Month End		Daily Consumption Target P		347.73 TL	Unit Price	Reactive	0.264700	0,264700
	Description	- Co	Target	Target Consumption Price	Consumption	Consumption Price	Consumption :	Consumption Price	Deflection	Daily Consumption ranger P	1000	au, and		neacene	0,204700	0,204700
							Trend	Trend		Date	Active Day	Capacitive	Inductive	Consump	tion Cor	sumption Cost
	Main Feeder MF		125,000.0000 kith	10,432.00 TL	153,600.5100 kWh	16,157,16 TL	192,800,9100 kWh	16,157.16 TL	54.00 %	01/04/2019	1	48,596	315,070	8.072.5	58	673,71
										02/04/2019	2	174,287	195,297	8.930,2	2	745,28
										03/04/2019	3	166,570	222,857	8.991,4	11	750,39
										04/04/2019	4	243,882	174,685	8.371,4	12	698,65
										05/04/2019	5	79,306	304,178	8.137,2	16	679,10
										06/04/2019	6	77,770	225,219	5.712,7	.78	476,77
										07/04/2019	7	60,696	90,458	1.355,3		113,11
										08/04/2019	8	126,397	251,440	7.744,6	51	646,33
										09/04/2019	9	217,238	196,569	8.866.6	9	739,98
										10/04/2019	10	186,966	356,299	9.058,7	1	756,00
										11/04/2019	11	56,250	301,552	9.230,0	12	770,30
										12/04/2019	12	271,186	237,444	9.582,0	3	799,68
										13/04/2019	13	144,340	184,620	6.054,1	12	505,25
										14/04/2019	14	76,089	44,967	1.271,8	12	106,14
										15/04/2019	15	237,664	182,142	7.447,6	52	621,55
										16/04/2019	16	151,155	243,651	7.980,7	15	666,04
										17/04/2019	17	79,740	329,911	7.634,1	19	637,12
										18/04/2019	18	56,251	281,383	7.915,3	12	660,58
										19/04/2019	19	112,553	268,869	8.444,8	13	704,77
										20/04/2019	20	144,478	137,552	5.994,1	16	500,25
										21/04/2019	21	19,395	87,425	719,4	5	60,04

Single Line Scheme (Mimic Diagram): Single line scheme can be designed through web-based system. Features similar to SCADA system can be defined (available only with WEB SCADA Module)

• Element creation can be done like in SCADA (from Mimic Element page)

• Similar to SCADA, both digital and analog commands can be send to the site / shop floor via the mimic diagram.

Single Line Schemes can be drawn as in SCADA.

• It can be drawn from an automation process and factory mimic diagram like in local SCADA solutions.

SaaS or On-Premises Solution: SaaS (Sofware as a Service) is optionally provided for anyone who does not want to invest in server or infrastucture. Monitoring your devices through our KIO SaaS server is possible.

The traditional model, known as on-premises solution, consists of downloading or installing KIO platform on your own server. This provides you with full control and protection over your data.

On the other hand, KIO SaaS server will provide advantages in terms of cost, time, ease of use, and maintenance. SaaS option is especially recommended for monitoring reactive rates.

Brand Independent Integration: Klemsan or other branded products can be added to the system and energy consumption of all products in the system can be monitored.

Below 3rd party devices can be perfectly integrated with KIO:

- Temperature Sensor,
- Electricity, Water and Heat Meter,
- Humidity Sensor,
- Vibration Sensor,
- Surge Arrester,
- Energy Management Products (Energy Analyzers, Reactive Relays, Multimeters,
- · Compressor,
- Generator,
- Flow Meter,
- · PLC,
- · Camera.

www.kioplatform.com